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SCALAR DILATON-QUARKONIUM MESON
IN NUCLEON STRUCTURE

V.A.Nikolaev, V.Yu.Novozhilov!, 0.G.Tkachev

Static properties and electromagnetic form factors of nu-
cleons are calculated in the Generalized Skyrme model with
an explicit scalar dilaton-quarkonium meson which saturates
the quark-loop contribution to the scale anomaly of QCD.

The investigation has been performed at the Laboratory
of Theoretical Physics, JINR.

CkansapHeiit ME30H-AUNATOH-KBAPKOHWIA B HYKNOHHON
CTPYKTYype

B.A.Hukonaes, B.KO.Hosoxunos!, O.I . Tkaues.

Brraucnensr onexkrpomaruuTHbie popMPakTophl U CTa-
TUYeCKHe CBOHCTBA HYKIOHOB B o606mennon Momgenu Cku-
pPMa, BKIIOYalolleH CKalipHOe Mojie AUIaTOHA-KBapPKOHHS,
KOTOpOe HacHIlaeT BKlaJ KBAPKOBOH MMETIN B MACIITabHYIO
anoManuio KX]I.

Pa6ora Beinonnena 8 Jlabopatopuu Teopernyeckoi Pu-

suxkn OUAN.

The main features of quantum chromodynamics (QCD) at
low energies are the spontaneous breaking symmetry via Nambu-
Jona-Lasinio mechanism and breaking of the scale symnietry so
that the divergence of the dilatational current does not vanish[1].
The QCD low-energy region is governed by quark and gluon
fluctuations leading to a formation of the non-zero values of the

quark <¢¢> and gluon <%r= (GZU)2> condensates. For the large

number of color N, one can consider QCD as an effective theory
of mesons only[2]. As for baryons one can follow the Skyrme
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idea that the baryon can emerge as a soliton in the chiral me-
son theory[3]. Considerations of the Skyrme model showed[4],[5]
that we can describe satisfactorily the basic static properties of
the nucleon except for the masses which are too large. One can
try to include the vector mesons (w, p, a1) to the non-linear sigma
model to stabilize soliton [6],{7], but the problem of large masses
remains. But this approach does not take into account the scale
anomaly of the QCD and therefore omits scalar particles which
are essential for understanding the intermediate range attrac-
tion in the nucleon-nucleon interaction[8], the nature of baryon
resonances|7], and reduction of the classical mass component.

At present time there are two different approaches to include

scalar meson-dilaton into the Skyrme model. In both approaches
the interaction of the dilaton field with the chiral field is dictated
by the scale invariance. The main difference is in the origin of
the dilaton. On one hand, there is the approach in which dilaton
is associated with the glueball[9]. In this approach the glueball
field saturates the scale anomaly completely. The potential{10]
which reproduces for pure gluodynamics the scale anomaly and
QCD scalar sum rules is considered. In the other approach, the
dilaton is treated as a quarkonium arising due to fluctuations
of the quark condensate[11},[12], which is an order parameter
for the chiral symmetry breaking. In this approach the dilaton-
quarkonium saturates a part of the scale anomaly, namely the
part which is produced by the quark loops. The choice of the
quarkonium as a dilaton is based on two principal observations:
a) The experimental studies of scalar resonances [13] show that
the real lightest candidate for the glueball state is fo(1590) (for-
mer G(1590)) [14] which does not appear in 77 and KK pro-
ductions.
b) Consideration of the chiral anomaly[15] shows that the only
gauge-invariant combination of the gluon field G, G, can con-
tact only with a total antisymmetric tensor €#**?, Thus this
combination has JP¢ = 0~+ quantum numbers and contributes
to Wess-Zumino-Witten action producing U(1) anomaly.

It suggests that the 0%+ glueball field as a fluctuation of G2,
cannot interact directly with the chiral field, but only through
the mixing with the dilaton-quarkonium. The estimate gives
small value for the mixing angle of glueball and quarkonium
states.
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Our model is based on the effective low-energy action for
pseudoscalar and scalar (dilaton-quarkonium) mesons which was
derived in[16] starting directly from the QCD generating func-
tional by the joint chiral and conformal bosonization method.
This lagrangian favours the linear sigma-model in terms of the
composite field ¢ = Frexp(—o)U. In this paper we present the
calculations of the main properties of the nucleon in the two-
flavor model, which is based on this effective action. We use the
notation of Ref.[16].

We define the effective action W,;;(U, o) for chiral and scalar
(dilaton- quarkonium) fields by

Zy(D)Z;}( D) = / D®erp[-W.;y(U,0)]
d = ea(z)/2U1/2($)’ (1)

where the functional
Zzy(D) = [ Doz~ (@ Da) (2)
L

is invariant under local and conformal transformations of quark
fields and should be approximately constant in low energy region
L. The effective action W,.;;(U, o) can be expressed using the
diagonal part of the projection operator onto the subspace || D—
M]|| < A of the eigenvalues k. One can calculate the diagonal
part of the projector using the finite mode regularisation [17] of
the functional integral. The relevant expression for the effective
Lagrangian for the dilaton- quarkonium and chiral fields at low
energy can be written in the form of generalized linear o model

for the field ¢ = Frezp(—a)U [16):

Lif(8) = FTr(0.6409) — V() +L19@), (3

2
V(g) = T{gﬁ (6*4)" + %9 (6* +9) -
N +
5 7:2 Tr.G?,In (‘ﬁpj)} . (4)
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The last two terms exactly reflect a contribution of a quark
loop to the scale anomaly, i.e., nonvanishing divergence of the
dilatational current D,

0,D* =T = ﬂ—(g’QGZ, + ) (1 + w)mibi; (5)

in the lover energy region L with zero values of anomalous dimen-
sions ;. The most interesting is the last term in (4) proportional
to G2, which corresponds to the contribution of quarks to the
Gell-Mann - Low S-function, which in one-loop approximation
contains pure gluonic part (proportional to the number of colors
N,) and fermionic part (proportional to the numbers of flavors

Ny)

uy -2y
¢ 3'f 3
1672 g (6)

w

Blg) = -

From the other hand, this term determines the mixing between
the dilaton-quarkonium and the colorless configuration T'r.G2,
of the gluon field (glueball). The equation (4) suggests that the
glueball field cannot interact directly with the chiral field, but
only through the coupling with the quarkonium-dilaton meson.
As the next step, one can introduce one-loop potential for glue-
ball field[10], diagonalize the mass matrix and consider the gen-
eralization of Skyrme model with two 0%+ scalar meson-glueball
and quarkonium. We estimate a mixing angle © between the
glueball G(1590) and quarkonium fields using Eqgs. (4) and (5)
in the spirit of the Ref.[18] and find that does non exceed 20. The
small value of © is consistent with the QCD sum rules approach.
Thus, it is a good approximation to consider only the contribu-
tion of dilaton-quarkonium to the formation of the baryon as a
chiral soliton.

As one cannot deduce the effective Lagrangian for the glue-
ball fields from the low-energy QCD we prefer to integrate out
the gluon fields with some plausible assumptions. The full gen-
erating functional

ZL = /DG emp{iWYM}/D(D exp {iW.s5(0,G)} (7)
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includes the integration over the gluon fields with the weight
exp[iWyp]. We combine the last term in (4) with the effective
Yang-Mills Lagrangian and find that a variation of the averaged
value of the dilaton field (0y) = o, changes the effective coupling
constant

1 .]VJ'O'c 1
(ﬁ + 247(‘2) TTCG?W = TTTCG?“/ . (8)

2955

At large positive values of o, the effective coupling constant
gess decreases, going over to the regime of the asymptotic free-
dom. This obstacle enables us to calculate the effectjve potential
not only in the region of low energies but also in the pertur-
bative region. Due to the asymptotic freedom, one can solve
the renormalization group equation for the vacuum energy in
one-loop approximation for the Gell-Mann-Low B-function [10]
B~ —bg®, b= —(33 —2N;)/48x? using the correlation between
the vacuum energy and the trace of the energy-momentum tensor

m

1, . B(g) 5

Eyee = = {(T") | T+ =) (e 9

4< ﬂ) 29 ( Iw) ( )

and find the principal contribution to the effective potential in
the asymptotic freedom region (large a.)[15]:

LN, — 2N, N,
&0 — 1
> 329N, ¢ =gy (10)

Ve (00) = — <9—s (@)’

/4

which replaces the last term in Eq.(4).
The corresponding effective lagrangian for the chiral and
scalar fields in the limits of the large N, is

2 2
Lo (U,0) = %e‘z"Tr [3#U8“U+]+£V¥1(6“0)2e‘2"+
1
12872

CoNy ([ _, 4 -
- ZeeS T 14 (1=e"%)). 11
48 (e ! 6(1 ¢ )) (1)

Tr [0,UU*,8,UU+]* —

This lagrangian is a generalization of the well-known Skyrme
model[3] and takes into account the conformal anomaly of the

21



QCD. The first two terms are the kinetic terms of the chiral
and scalar fields. The kinetic term of the chiral field has an ad-
ditional scale factor ezp(—2¢) in comparison with the Skyrme
model. The third term is a well-known Skyrme term. The ef-
fective potential for the scalar field is a result of the extrapola-
tion of the low-energy potential into the high energy region in
one-loop approximation to the Gell-Mann-Low QCD S-function.
The parameter ¢ depends on the number of flavors N;: ¢ =
8N;/(33 — 2Ny).

In the baryonic sector we choose for the chiral field the spher-
ically symmetrical static Skyrme ansatz U(Z) = ezplit - nF(r)]
where 7 = 7/|r] and 7 is Pauli matrixes. It is convenient to intro-
duce a new field p(z) = exp(—o(z)). The mass functional for the
dimensionless variable £ = eF,r has the form M = M+ M4+ V,
where

+oco

F ’ 2 1\2
M, = 47r?” / dz [ivll—fxz () +p? (x (QF) +3in2F)] , (12)
0

400

F, sin?F 2] .

M, = 47r—e—/dz[ 57 + (F) ] sin®F (13)
0

400
Fr 4
V = 4n—Dy / dzz? [p4 -1+ = (1-— pe)] . (14)
e
0

In Eqs.(12-14) the Skyrme parameter e is equal to 27 in ac-
cordance with Eq.(11). For the factor D.;; we have D sy =
CyN;/48€*F}. For the pion decay constant Fi we take its exper-
imental value F, = 93MeV. The value of the gluon condensate
is estimated by QCD sum rules C, = (300 — 400MeV)*. The
Euler-Lagrange equations for the shape functions F(z) and p(z)
follow to be:

F" [p*a? + 2sin®F| + 2F'z [zpp’ + p°] + F'sin(2F) —

—p?sin(2F) — sin(2F)sin’F/z* =0 , (15)
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$2(F')2

N
Tf:zt [xp” +2p'] — 2p 5 + sin?F| —
4Dy [~ 5] =0, (16)

where prime corresponds to the derivative with respect to z. The
solutions of the Eqs.(15-16) are graphically represented in Figs.1
and 2. According to the virial theorem, the contributions of
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- — — — G=50MeV
: 0.2 3
o4 g o,
Fig.1. Chiral angle F(z) Fig.2. Scalar meson shape
in GSM and OSM for C, = function for G = C'gl/4 = 50
(300MeV)* and N; = 2. Mev, 350 MeV and 1.0 GeV.

the individual terms of the functional on solutions of the system
must satisfy the condition My — My —3V = 0, which can be used
to control accuracy of the numerical solution of the system. The
asymptotic behaviour at large distances for F(z) is identical to
the Skyrme model F'(z) ~ a/z? and behaviour of p(x) exhibits
a rapid downfall from the unity: p(z) ~ 1 —b/z® + .... The
investigation of Eq.(15-16) at small distances gives: F ~ 7N —
az, p ~ p(0)+Bz%, p(0) # 0. The boundary conditions ensure a
finite mass functional for a given value of the topological charge
N. :
Note, that there is another solution when the function p(z)
vanishes at the finite value of radius z = z., z. # 0. Due to
the factor exp(—20) in front of the kinetic chiral term in (8)
the dynamical chiral field does not propagate at distances less
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than z. and the bag-like structure emerges.The baryon charge is
quantized on non-topological grounds in order to have the mass
functional finite.

In this paper we look for nonvanishing solutions for p(x) at
origin and the chiral shape function F(z) has the same boundary
conditions in the main order as in the original Skyrme model
(OSM). That is the reason why we call this model: general-
ized Skyrme model (GSM). To calculate the properties of the
baryon in GSM we introduce breather and rotational degrees
of freedom[5] as a collective coordinates. We choose the time-
dependent chiral and scalar fields in the form

U7, t) = A@t)Us (eXt)7) AT (t), p(7,t) = po (eMt)F) . (17)

The time-dependent scalar parameter A plays the role of the col-
lective variable describing breather vibrations of the solutions of
the stationary equations Uy(7) and p(7). After canonical quanti-
zation and diagonalization in angular variables[5], we obtain the
effective Hamiltonian

D2 G2
Fal P/\ S

= 5ty T MO+ 575 (18)

Here P, is the quantum momentum operator corresponding to

vibrations and S is the operator of spin. The effective mass
m()), the potential M()) and the moment of inertia () are
given by the expression

m()) = e*Q+e Qs , (19)
M(\) = e*M+e*M+e >V, (20)
IN) = e3P L+e?]. (21)

The coefficients M, My and V are given by Eqgs.(12-14). Qq,
Q.4, I, and I, are the values of the following integrals:

@ = / wet [Py ey @
Q. = ef; / dez?(F')2sin’F | (23)
0
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4 1|
—37£F = /dmx2p23in2F , (24)
0

167 1 sin’F] .
.[4 prosmn} _3_F7re3 /d$1:2 [(FI)2 - xz ] SanF . (25)
0

Some numerical results are given in the Table and Fig.3,

where the mean square root radius (rQB)l/ ? of the baryon charge

3.0

. Masses (GeV) J =5/2

i Hedgehog G(MeV)
I { |

0.5 1 I L 1 1 1 I L 1
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Fig.3.Mass spectra of the ground and excited states in GSM
(solid line) and OSM (dashed line).

distribution

.2
1 lF,san (26)

Jo(z) = _F,,e 272 z?

and mean square root radius < r? >!/2 of the isovector charge
distribution

Jin(z) = sin®F [2%p® + (F')?2® + sin®F] (27)

are also shown.

The form factors of the neutron and proton have been calcu-
lated using the Eqs.(26-27) and graphically represented in Figs.4
and 5.
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Table. Main static properties of solution with B = 1 in the two
flavor Generalized Skyrme Model for the choice of the parameters
Fr =93MeV, e =2n, C, = (300MeV)*. The results obtained

in the Original Skyrme Model are given for the comparison.

GSM GSM OSM OSM
Values without with without with
vibrations | vibrations | vibrations | vibrations
M, 839 1098
M, 1084 1026 1310 1288
<r2>M2 1 .38 0.45 0.34 0.45
<r?>MP 065 0.77 0.68 0.85

We should like to point out that the classical and rotational
components of the baryon mass are much smaller as compared
to the original Skyrme model. One can see a partial restoration
of the chiral symmetry at small distances which appears as a
suppression of the chiral kinetic term in (11) due to a deviation
of the function p(x) from its asymptotic value equal to 1. (See
Fig.2).
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Fig.4.Electromagnetic form factor of a neutron in GSM with
vibrations (solid line with centered symbols), without vibrations
(dashed line with centered symbols) and OSM with vibrations
(solid line), without vibrations (dashed line).
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Fig.5.Electromagnetic form factor of proton in GSM and OSM.
Notations are the same as for Fig4.

The model that we have presented is based solely on chiral
and conformal anomalies of the QCD and in comparison with
the original Skyrme model it leads to the following results:

(a) The chiral symmetry at small distances partially restored due
to the suppression of the chiral kinetic term;

(b) The classical Skyrmion mass crucially decreases;

(c) Skyrmion is a very compact object that leads to a large value
of the N — A mass splitting; '

(d) The nucleon mass in this model is in good agreement with
the experimental one.
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